91 research outputs found

    Holographic predictions for cosmological 3-point functions

    Get PDF
    We present the holographic predictions for cosmological 3-point correlators, involving both scalar and tensor modes, for a universe which started in a non-geometric holographic phase. Holographic formulae relate the cosmological 3-point functions to stress tensor correlation functions of a holographically dual three-dimensional non-gravitational QFT. We compute these correlators at 1-loop order for a theory containing massless scalars, fermions and gauge fields, and present an extensive analysis of the constraints due to Ward identities showing that they uniquely determine the correlators up to a few constants. We define shapes for all cosmological bispectra and compare the holographic shapes to the slow-roll ones, finding that some are distinguishable while others, perhaps surprisingly, are not.Comment: 51pp; 4 fig

    Hopf algebras, coproducts and symbols: an application to Higgs boson amplitudes

    Full text link
    We show how the Hopf algebra structure of multiple polylogarithms can be used to simplify complicated expressions for multi-loop amplitudes in perturbative quantum field theory and we argue that, unlike the recently popularized symbol-based approach, the coproduct incorporates information about the zeta values. We illustrate our approach by rewriting the two-loop helicity amplitudes for a Higgs boson plus three gluons in a simplified and compact form involving only classical polylogarithms.Comment: 46 page

    Exact ground states for the four-electron problem in a Hubbard ladder

    Full text link
    The exact ground state of four electrons in an arbitrary large two leg Hubbard ladder is deduced from nine analytic and explicit linear equations. The used procedure is described, and the properties of the ground state are analyzed. The method is based on the construction in r-space of the different type of orthogonal basis wave vectors which span the subspace of the Hilbert space containing the ground state. In order to do this, we start from the possible microconfigurations of the four particles within the system. These microconfigurations are then rotated, translated and spin-reversed in order to build up the basis vectors of the problem. A closed system of nine analytic linear equations is obtained whose secular equation, by its minimum energy solution, provides the ground state energy and the ground state wave function of the model.Comment: 10 pages, 7 figure

    Loop lessons from Wilson loops in N=4 supersymmetric Yang-Mills theory

    Full text link
    N=4 supersymmetric Yang-Mills theory exhibits a rather surprising duality of Wilson-loop vacuum expectation values and scattering amplitudes. In this paper, we investigate this correspondence at the diagram level. We find that one-loop triangles, one-loop boxes, and two-loop diagonal boxes can be cast as simple one- and two- parametric integrals over a single propagator in configuration space. We observe that the two-loop Wilson-loop "hard-diagram" corresponds to a four-loop hexagon Feynman diagram. Guided by the diagrammatic correspondence of the configuration-space propagator and loop Feynman diagrams, we derive Feynman parameterizations of complicated planar and non-planar Feynman diagrams which simplify their evaluation. For illustration, we compute numerically a four-loop hexagon scalar Feynman diagram.Comment: 20 pages, many figures. Two references added. Published versio

    Graviton Vertices and the Mapping of Anomalous Correlators to Momentum Space for a General Conformal Field Theory

    Full text link
    We investigate the mapping of conformal correlators and of their anomalies from configuration to momentum space for general dimensions, focusing on the anomalous correlators TOOTOO, TVVTVV - involving the energy-momentum tensor (T)(T) with a vector (V)(V) or a scalar operator (OO) - and the 3-graviton vertex TTTTTT. We compute the TOOTOO, TVVTVV and TTTTTT one-loop vertex functions in dimensional regularization for free field theories involving conformal scalar, fermion and vector fields. Since there are only one or two independent tensor structures solving all the conformal Ward identities for the TOOTOO or TVVTVV vertex functions respectively, and three independent tensor structures for the TTTTTT vertex, and the coefficients of these tensors are known for free fields, it is possible to identify the corresponding tensors in momentum space from the computation of the correlators for free fields. This works in general dd dimensions for TOOTOO and TVVTVV correlators, but only in 4 dimensions for TTTTTT, since vector fields are conformal only in d=4d=4. In this way the general solution of the Ward identities including anomalous ones for these correlators in (Euclidean) position space, found by Osborn and Petkou is mapped to the ordinary diagrammatic one in momentum space. We give simplified expressions of all these correlators in configuration space which are explicitly Fourier integrable and provide a diagrammatic interpretation of all the contact terms arising when two or more of the points coincide. We discuss how the anomalies arise in each approach [...]Comment: 57 pages, 7 figures. Refs adde

    Heavy fermions and two loop electroweak corrections to b→s+γb\rightarrow s+\gamma

    Full text link
    Applying effective Lagrangian method and on-shell scheme, we analyze the electroweak corrections to the rare decay b→s+γb\rightarrow s+\gamma from some special two loop diagrams in which a closed heavy fermion loop is attached to the virtual charged gauge bosons or Higgs. At the decoupling limit where the virtual fermions in inner loop are much heavier than the electroweak scale, we verify the final results satisfying the decoupling theorem explicitly when the interactions among Higgs and heavy fermions do not contain the nondecoupling couplings. Adopting the universal assumptions on the relevant couplings and mass spectrum of new physics, we find that the relative corrections from those two loop diagrams to the SM theoretical prediction on the branching ratio of B→XsγB\rightarrow X_{_s}\gamma can reach 5% as the energy scale of new physics ΛNP=200\Lambda_{_{\rm NP}}=200 GeV.Comment: 30 pages,4 figure

    Generalized quark-antiquark potential at weak and strong coupling

    Get PDF
    We study a two-parameter family of Wilson loop operators in N=4 supersymmetric Yang-Mills theory which interpolates smoothly between the 1/2 BPS line or circle and a pair of antiparallel lines. These observables capture a natural generalization of the quark-antiquark potential. We calculate these loops on the gauge theory side to second order in perturbation theory and in a semiclassical expansion in string theory to one-loop order. The resulting determinants are given in integral form and can be evaluated numerically for general values of the parameters or analytically in a systematic expansion around the 1/2 BPS configuration. We comment about the feasibility of deriving all-loop results for these Wilson loops.Comment: 43 pages: 15 comprising the main text and 25 for detailed appendice

    One-loop effective actions and higher spins

    Get PDF
    The idea we advocate in this paper is that the one-loop effective action of a free (massive) field theory coupled to external sources (via conserved currents) contains complete information about the classical dynamics of such sources. We show many explicit examples of this fact for (scalar and fermion) free field theories in various dimensions d = 3,4,5,6 coupled to (bosonic, completely symmetric) sources with a number of spins. In some cases we also provide compact formulas for any dimension. This paper is devoted to two-point correlators, so the one-loop effective action we construct contains only the quadratic terms and the relevant equations of motion for the sources we obtain are the linearized ones
    • …
    corecore